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AN EVEN-PARITY/ODD~PARITY FORMULATION
FOR 'DETERMINISTIC
TRANSPORT CALCULATIONS ON MASSIVELY
PARALLEL COMPUTERS (U)

by

J. E. Morel, L. A. Olvey, G. W. Claborn, J. A. Josef
University of California
Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract:We have developed a highly parallel deterministic method for performing tim.—
dependent particle (ncutron, gamma-ray, or thermal radiation) transport calculations on
arbitrarily connected 3—D tetrahedral meshes. The standard discrete-ordinates metnod,
which is used to solve the first—order form of the transport equation, is extremely
cumbersome to apply on such meshes and is based upon a mesh sweeping algorithm that is
highly sequential in nature. A serial 1-D code for the CRAY-YMP and a parallel 1-1)
code for the CM-2 {(Conncction Machine) have been written to test our basic method.
Comparisons between these two codes have shown that our new even/odd parity method is
highly parallelizable.

1. INTRODUCTION

Radiation transport plays a major role in many different technical areas including
nuclear reactor design, controlled fusion rescarch, atmospheric science, heaith and
environmental safety analysis, and nuclear weapons design.  ‘T'he radiation transport
equation can be expressed in the following form: !
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where ¢ denotes the angalar flux, 2 is a unit vector denoting the particle direction,
denotes the particle energy, a¢ denotes the total macroscopic interaction cross section, oy
denotes the differential scattering cross section, and q denotes the inhomogencous source

function.  The most  common  deterministic method  for solving Fq. (1) s the
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2 This method is based upon the use of finite differences

discrete—ordinates or S, method.l'
to approximate the spatial derivatives and quadrature methods to approximate the angular
integrals appearing in this equation. The cnergy variable is discretized using the
multigroup method, which can be thought of as a type of Galerkin method. The encrgy
domain is partitioned into a set of intervals, and each interval corresponds to an energy
group. The flux associated with an energy group is called the group flux and represents the
total flux due to particles having energies within that group. When discrztized. the left
side of Eq. (1) takes the form of a lower triangular matrix, which allows 9 to be directly
calculated given the source on the right side of Eq. (1). This gives rise to the standard
iterative method for solving Eq. (1), which is called source iteration, and can be
represented as follows:

R A (3)
where ¢ denotes the iteration index. Fquation (3) represents the simplest form of source
iteration, which corresponds tu a Jacobi—type iteration. The most commonly used form of
source iteration is related to a Gauss—Seidel method, and is composed of what is called
inner iterations and outer iterations. It is not important to understand thesc iterations in
detail.  For our purposes it suffices to say that inner iterations involve only the source
component resulting from transfers within a group, while outer iterations involve only the
source component resulting from transfers between groups. ‘The source iteration process is
inherently sequential, and hence not suited to massively parallel computer architectures.
Unfortunately, essentially all techniques developed to date for solving the transport
equation require a source iteration at some point in the calculation.  For instance the
classic diffusion-—synthetic scheme and recently developed multigrid schemes require a

L}
source iteration to attenuate high frequency error mml(-s.l'z’3

1.1 DEVELOPMENT
As an alternative, we manipulate Eq. (1) into a form which is extremely amenable to

parallel solution techniques. We begin by defining the even parity and odd- parity fluxes,

1,0* and ¥ , respectively,

v (82) ﬂ.’l;"'( i), (1)
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It is not difficult to algebraically manipulate Eq. (1) into the following set of equations:

-7 (50 - V9)eow 409 ), (6)
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where the even—parity and odd—parity sources, Q+ and Q  are defined in anzlogy with Eq.
(4) and Eq. (5) respectively.

Equations (6) through (9) are redundant in that there are two equations cach for ot
and ¥ . However, they are not nccessarily redundant when solved numerically. In
particular, we have developed a finite—clement formulation, based upon piecewise—lincar
and piccewise—constant trial spaces for 3-1) tetrahedral meshes, such that Eqs. (6) and (7)
ar¢ solved as a complete system to provide ¢+ at the tetrahedral nodes and ¢ at the
tetrahedral centers, while Eqs. (8) and (9) are solved as a complete system to provide ¢
at the tetrahedral nodes and w+ at the tetrahedral centers.  Interestingly, for almost all
practical applications, one generally needs to know ¢ only on the surface of the system
because all quantities of physical interest in the inierior of the system can be calculated
from 1/-*’. Furthermore, boundary conditions allow one to trivially calculate ¥ from v;"' at
the outer boundary nodes. Thus, one nced only solve Eqs. (6) and (7) to obtain all
quantities of practical interest  Conscequently, we consider only this system of equations
for the remainder of this discussion.
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Solving Eqs. (6) and (7) using a standard source iteration scheme analogous to that
used to solve Eq. (1), we obtain:

4 49,1 4 A 40
—-Q . v (Etn . v¢+,£+1)+at¢f,ei1:q+,£_n.v(q ,L/a‘l), (10)
1 - — 1
,p—,’.+1 =_an.v¢1,£+1+a_"q—‘,t (11)

Note that the left side of Eq. (10) corresponds to a symmetric positive—definite,
second—crder operator that can he inverted using any technique developed for the standard
diffusion operator (specifically, for our calculations, conjugate gradient with row and
column scaling as a |.\recondit.iom:r).4 Furtherinore, once ¢+'l+l has been obtained from
Eq. (10), ¢ +1 can be explicitly obtained without a matrix inversion.

We have performed a fourier analysis which indicates that this form of source
iteration has error attenuation properties very similar to those of the standard form,
Eq. (3). However, unlike the standard form, this new form is extremely compatible with
massively parallel computer architecturcs. Furthermore, it appears that highly efficient
acceleration schemes such as the diffusion—synthetic scheme for inner iteration
acceleration, and the linear—multifrequeacy—grey schcmc5 for outer iteration acceleration,
can be casily applied to Eqs. (6) and (7) on complicated meshes, whereas great difficultics
arise in applying such sckemes 'o Fq. (1) on such meshes. One of the major deficiencies of
modern numerical transport methods is a lack of effective acceleration schemes for these
types of calculations. Thus, the approach that we have ontlined has the potential for
significantly advancing the state—of--the -art for transport calculations on complicated 3—-1)
meshes through the exploitation of massively parallel computing techniques.

1.2 RESULTS

A 1-D one energy group time-dependent slab-geometry version of the new
cven--parity and odd—-parity transport equations has been coded for both the CRAY-YMP
and the CM-2 (Connection Ma.chin(-.).o'"9 Both versions use basic source iteration with
two—moment diffusion--synthetic acceleration of the inner iteration: along with standard
S, angular discretization and lincar- continuous finite clement spatial discretization (with

tumping of removal and source terms).
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We present computational results for two problems. Each figure will be comparing
execution times (as the number of mesh cells is varied) between the CRAY—YMP version
and the parallel CM-2 version. The CM—2 or Connection Machine we use has 64K (or
65536) bit serial processors each with 32K bytes of memory, 64—bit floating—point Weitek
chips, and 10 gigabytes disk storage.

The first problem is a Sys, steady—state calculation with constant width mesh cells,
vacuum boundaries, and a flat source across the spatial domain. In both the CRAY-YMP
version and the CM—-2 version we set the number of source iterations, set the number of
conjugatc gradient iterations, and then varied the number of mesh cells while comparing
execuiion times between the twe versions. These results are shown in Fig. 1. For these
results only 32K processors (or half the machine) were used on the CM—2, and one cpu on
the CRAY-YMP. It may be seen that the parallelized CM-2 version performs better than
the CRAY-YMP version for all number of mesh cells. Specifically, at 225000 mesh cells
the CM—2 version is approximately 2 times faster. Also, note that the CRAY-YMP curve
1s extrapolated after 111,000 mesh cells since the problem size exceeded the CRAY's
available memory.

The second problem is a S, time--dependent calculation, with vacuum boundaries,
and a flat unit source across the spatial domain. For this problem we set the width of the
spatial domain to 50 mfp. The macroscopic scattering cross—sections zeroeth moment is
set at 2, and the first moment at 1. The macroscopic absorption cross-section is equal to 1
and there is no fission. For the results shown in Fig. 2 at each number of mesh cells we
performed a time—dependent calculation with the time step set at .005 sec and 10 steps.
For each number of mesk cells we performed this time—-dependent calculation and
compared execution times between the CRAY-YMP and CM-2 versions.  For these
calculations we used all 64K processors on the CM—2, and 1 ¢pu on *he CRAY --YMP. The
parallelized CM--2 version performs better than the CRAY--YMP verston for o'l number of
mesh cells. Specifically, at 200,000 mesh cells the CM~2 version is approximatoly 4 times
faster. Again, note that the CM—2 had no difficulty handling problem sizes larger than
250,000 mesh colls whereas the problem size pot too large for the CRAY-YMP at
approximately 200,000 mesh cells.
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2. CONCLUSIONS

In conclusion, standard discrete—ordinates, or S,, is based upon a mesh sweeping
algorithm that is highly sequential in nature thus not suited to massively parallel computer
architectures. Our new even—parity/odd—parity method is highly parallelizable as seen
from the results presented.

The even—parity equation has been solved with isotropic scattering and S, angular
discretiza.t;ion.1 However, with isotropic scattering the odd—parity doesn’t appear in the
even—parity equation. Thus, with isotropic scattering, one need not solve the odd—parity
equation.

Our method is "new" in that we are simultaneously solving the discretized Znd—order
form of the even—parity transport equation and the discretized lst—order form of the

odd—parity transport equation assuming anisotropic scattering and using source iverations
with two—moment diffusion synthetic acceleration. The basic discretized equations are

obtained by employing an Sp-like discretization in direction together with a
linear-—continuous finite—element discretization (with lumping of the removal and source
terms) in space.

The diffusion—like equation for the even—parity flux is a major advantage for our new
methed since much work has been done on parallel solution algorithms for the diffusion
equation (specifically conjugate gradient with row and column scaling). Another major
advantage is the direct solution of the odd—parity equation; two diffusion matrices do not
have to be solved during each source iteration.

Many factors need to be investigated for 3—D multigroup calculations such as
gencralizing linear multifrequency—grey to treat neutronics calculations with fission and
downscatier. Also, for 3—D parallel calculations on the CM—2, we need to develop optimal
data storage and retrieval schemes, optimal iteration matrix and source vector generation
schemes, and an optimal conjugate gradient solver.  Ultimately, we will have a
state—of—the—art multigroup, time—dependent parallel transport solver for neutron,
gamma-ray, or thermal radiation calculations on complicated 3—D) tectrahedral meshes.
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